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1 Introduction 

In this paper we present a theoretical approximation framework for computation of op- 

timal feedback controls in linear quadratic regulator problems governed by parabolic 

partial differential equations with time dependent coefficients. Our efforts were orig- 

inally motivated by the desire to develop control strategies (distributed in nature) 

for insect dispersal models (see Chapter 1 of [BK2] and the references therein) which 

have been shown to involve time dependent coefficients. 

The presentation below is somewhat in the spirit of that  for autonomous 

parabolic systems in [BKl] and [LT] in that we attempt to  develop a convergence 

theory in which uniform stabilizability of the original system is preserved under ap- 

proximation. It differs substantially from [BI<l] and [LT] since we don’t use directly 

sectorial properties of the operators and resolvent and spectral set arguments to  es- 

tablish preservation of stabilizability and detectability. (Indeed, the time dependent 

nature of our system prevents this.) Nor do we use the Trotter-Kat0 theorem (which 

is not well suited for use with nonautonomous control systems) in our convergence 

arguments. 

In section 2 we summarize previous results for abstract LQR problems on 

infinite time intervals and formulate these in a form readily used in our subsequent 

discussions. This formulation is based on the abstract frameworks found in [CP], [GI, 
[BKl] and [Da], [DIl], [DI2]; we rely heavily on the ideas of Da Prato and Ichikawa 

which guarantee uniqueness of solutions of the associated Riccati integral equations 

under certain stabilizability and detectability assumptions. 

An approximation framework for abstract evolution systems in the spirit of 

[GI, [BKl] is given in section 3; convergence of the approximate Riccati operators 

( and, of course, the corresponding controls and trajectories) is established under 

uniform stabilizability and detectability hypotheses on the approximate evolution 

control systems. 
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Our major contributions are given in section 4, along with the presentations 

in section 5 and 6, where we show how the hypotheses of section 4 can be verified 

for rather wide classes of problems of interest. In section 4 we focus our attention 

on parabolic systems described by time dependent sesquilinear forms (in the spirit 

of the autonomous system frameworks in [BKl], [BIl], [BIa]) and associated evolu- 

tion equations. We make substantial use of the results of Tanabe [TI to  formulate 

our problems in a weak (V') sense. Our fundamental convergence results (Theo- 

rem 4.4) for the uncontrolled systems rely on a sesquilinear or variational formulation 

of the systems, strong V-ellipticity of the parabolic evolution systems, approximation 

properties for the spaces approximating the state space, and the Gronwall inequality. 

(Certain aspects of this approach can be relaxed to allow us to treat weakly damped 

hyperbolic systems-see [BIG], [BKW].) We are then able to reduce convergence 

questions for the controlled systems (e.g., convergence of Riccati variables, optimal 

controls and feedback evolution systems) to conditions of uniform stabilizability and 

uniform detectability of the approximate systems (Theorem 4.5). 

We show in section 5 that  we can obtain these uniform stabilizability/detectability 

conditions by preservation under approximation of dissipative inequalities for certain 

classes of evolution control systems. Sufficient conditions that are readily checked in 

many examples are given and several special cases are noted. 

An alternative approach is presented in section 6 where we restrict our consid- 

erations to  parabolic systems for which the domain V of the generator of the evolution 

system embeds compactly in the state space H .  In this case, it is shown that stabi- 

lizability/detectability of the original system is preserved under approximation. 

Finally in section 7 we give an example of a class of parabolic partial differential 

equation control problems for which all the hypotheses of our theoretical framework 

can be easily verified. 

We have used the ideas presented in this paper to develop and test compu- 

tational packages for solving nonautonomous parabolic control problems of the type 
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discussed in section 7. However, since our presentation here is already quite long and 

since a presentation of our detailed numerical findings would entail lengthy discus- 

sions, we will not discuss the numerical examples. A separate manuscript is under 

preparation; the interested reader can also consult [W]. 

We believe that the present paper offers new results for time dependent infinite 

dimensional control systems. Moreover, our arguments are such that we offer an 

attractive alternative approach to those found in [GI, [BKl], [LT] even in the case of 

aut onomous parabolic systems. 

2 The abstract linear quadratic regulator problem on an 
infinite time interval 

In this section we formulate a linear quadratic regulator problem for evolution system 

dynamics in a Hilbert space. We present a collection of functional analytic and 

control theoretic results related to such problems. The results we give in this section 

are known and, while in some cases we have modified the statements to present the 

results in a form most suited to our purposes, the reader can easily refer to the 

literature for proofs. In particular, we use freely results found in [CP] and [GI and 

rely heavily on recent results of Da Prato and Ichikawa [Da], [DIl], [DI2]. 

We first recall results for evolutionary systems. Let H be a Hilbert space 

with inner product < -,. >. Let A(t0, t j )  = { ( t , s )  I t o  I s I t I t j } ,  A,(&,) = 

{ ( t ,  s) I t o  5 s 5 t < 00) and L ( H )  be the Banach algebra of bounded linear operators 

on H .  We use & ( [ t o ,  t j] ;  L ( H ) )  to  denote the set of operator valued functions that 
are bounded on [ t o ,  t j ] .  We recall that T(. ,  .) : A(t0, t j )  H L ( H )  is called an evolution 

operator if T satisfies the following conditions: ( i )  T ( t ,  s) = T( t ,  r )T(r ,  s), for t o  5 s 5 
r 5 t 5 t j ;  (ii) T ( t ,  t )  = I ,  for t E [to, t j ] ;  and (iii) T ( t ,  s) is strongly continuous in s 

on [ t o ,  t] and strongly continuous in t on [s, t j] .  We say that an evolution operator has 

exponential growth if there exists MI 2 1 , w  > 0 such that IIT(t, s)zll 5 M1ew(t-S)llzll, 

for ( t ,  s) E A,(to), z E H. An evolution operator is said to be uniformly exponentially 
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stable if there exists AI 2 1 and CY > 0 such that IIT(t,s)a:ll 5 Me-a(f-s)lla:ll, for 

( t ,  s )  E A,(to), a: E H. We have the following fundamental results of Datko which 

will be crucial to our presentation. 

Lemma 2.1 [Dt] Consider an evolution operator T ( . ,  a )  with erponential growth. 

Then T( . , . )  is uniformly exponentially stable i f  and only i f  there exists an M2 such 

that 

lw 1 1 ~ ( t , s ) a : 1 1 ~ d t  5 M ~ I I ~ : I ~ ~ ,  f o r  s 2 t0 ,5  E H .  

Furthermore we can find constants M3 2 1, cr > 0 depending only on MI, M2 and w 

for  which the following estimate holds: 

I I T ( ~ ,  s>ll 5 ~ ~ e - ~ ( ~ - ~ )  7 fo r  ( t , s )  E nw(t0). 

The original statement and proof of this theorem are due to R.Datko. We 

have modified slightly (see Appendix A of [W]) the original proof in [Dt] to  point 

out the relationship between the constants hf3,cr and hf l ,M2 and w .  This will be 

essential for our subsequent use with approximation systems. In [W] it is shown that 

the constants M3 and cr can be chosen as: 

In our discussions of control systems, perturbations of evolution operators 

(see [CP]) will play an important role. Let t f  < 00. Consider a uniformly bounded 

evolution operator T( . ,  e )  and C( . )  E B,([to, t,]; L ( H ) ) .  Then the integral equation 

for S ( t , s )  E L ( H )  given by 

~ ( t ,  s>a: = ~ ( t ,  s>a: + T ( t ,  7 ) ~ ( 7 1 ) ~ ( 7 7 ,  s)a:dv, for a: E H ,  

has a unique solution S ( - ,  .) in the class of strongly continuous operator valued func- 

tions. Moreover, S( . ,  e )  is an evolution operator and is called the perturbed evolution 

operator corresponding to the perturbation of T ( . , - )  by C ( - ) .  In addition, S ( . , - )  is 

also the unique solution of 

~ ( t , s ) a :  = ~ ( t , s ) a :  + 6‘ ~ ( t , v ) ~ ( v ) ~ ( v ,  s)xdv, for a: E H. 
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We turn next to our formulation of the regulator problem for an evolution 

system. We let H ,  U be real Hilbert spaces with inner products < -, > H ,  < e , .  >u; 

H,U are the state space and the control space respectively. Consider an evolution 

operator T( . ,  -) defined on &,(to). The control system is described as follows: for 

any u E L2([t0,  00); U ) ,  the corresponding trajectories satisfy the equation: 
I 

The cost functional is given by 

where x(.) is the trajectory corresponding to u with x( t0)  = xo. For each given t o ,  20, 

the optimal control problem is to find a control u* which minimizes (2.2) over all 

u E L2([to,  00); U ) .  

We can consider (2.2) as the limit as t k  --f 00 of 

with G = 0. Here we shall summarize existence results for optimal controls in the 

infinite time interval, existence and uniqueness of the solutions of the Riccati integral 

equation on an infinite time interval, and stability of the feedback system. 

We make the following standing assumptions for all subsequent discussions 

of (2.l), (2.2): ( i )  The evolution operator T( . ,  -) ha.s exponential growth. (Thus, in 

particular, T ( t ,  s) is uniformly bounded for s, t in any bounded sub-interval of [ to ,  00) ) ;  

( i i )  The operator valued function B ( - )  : [to, 00) H L(U, H )  is uniformly bounded in 

[to,  m), i.e. there exists MB such that IIB(t)llLcu,H, 5 MB for all t E [to,  00);  (iii) The 

operator valued function W(. )  : [to, 00) H L ( H )  is uniformly bounded in the interval 

[to,m), and W ( t )  is nonnegative definite self-adjoint for all t E [ t o , m ) ;  (iv) The 

operator valued function R(.) : [to,oo) H L(U)  is uniformly bounded in the interval 

I 
i 
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[to, oo), and R(t )  is positive definite self-adjoint for all t E [to, 00). Furthermore, there 

exists a constant T > 0 such that < R(t)u,u >u> rllu11&, for all u E U .  

Under these assumptions we consider the linear quadratic control problem in 

the interval [ t o ,  t k ]  for t k  < 00. That is, we consider the cost functional (2.3) with our 

system (2.1). Then for any bounded self-adjoint nonnegative definite linear operator 

G, it is well known that for each given 20 E H ,  there exists a unique control u such 

that 

This control u can be written in a feedback form u ( t )  = -R-*(t)B*(t)Q(t)z(t) ,  for 

t E [ t o , t k ] ,  where x(.) is the corresponding trajectory and & ( e )  : [to,t f]  H L ( H ) ,  is 

the unique self-adjoint solution of the Riccati integral equation (RIE) 

(2.4) &(+ = T * ( L  W W k ,  t ) X  + lk T*(% w W d W l , ~ ) X d V  

- lk T* (71~1) Q (71) B (7 1 R- ’ (71 )B*( 71 ) Q ( 71 ) T ( ~ I  , t 1 zd71 

for all t E [ t o , t k ]  and x E H .  

We note that in the case G = 0, the above equation reduces to  

for all t o  5 s 5 t 5 t k  and x E H .  Solutions of this latter equation have a rep- 

resentation that is often used in control theoretic arguments. Consider any u( . )  E 

L2([to,  t k ] ;  U ) ,  and for x E H ,  define a N-valued function y(.) by 
t 

y ( t >  = ~ ( t ,  s>z + L ~ ( t ,  7 ) ~ ( 7 ) u ( T ) d T ,  for t E is, t k ] .  
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If & ( e )  is a self-adjoint solution of (2.6), then 

where ~ ( t )  = u ( t )  + R-’(t)B*(t)Q(t)y(t). This can be used to show that (2.6) has a 

unique self-adjoint solution. 

Before continuing our discussion, let us introduce additional notation. Let 

E+ = { E  I E E L ( H ) ,  E self-adjoint, nonnegative definite.} 

c,([to, t k ] ;  E+> = {I( : [to, t k ]  ++ E+ I K strongly continuous.} 

By the uniqueness of the solution of equation (2.6), we can define a mapping A : 

E+ H C,( [ to ,  tk]; E+) as following: for each G E E+, AG is the unique nonnegative 

definite self-adjoint solution of equation (2.6). Under our general assumptions, it is 

easily seen that for fixed G the map A depends only on t k ;  if we consider the linear 

quadratic regulator problem on two bounded intervals [to, t l ]  and [ to ,  t2], we will use 

A I ,  A2 to denote the maps associated with each interval respectively. 

Now consider a increasing sequence { t k } r z 1 ,  with t k  < 00. The map A k  as- 

sociates with each finite interval problem the Riccati equation on [ to ,  t k ] .  Let G = 0 

and Q k ( . )  = AkG. For simplicity, consider a bounded interval [u ,b ]  c [to, t l] ,  and for 

each t E [a ,  b],z E H ,  we assume that there exists a constant M ( t , z )  such that for 

all k 

(2-8) < & k ( t ) Z , Z  > H  5 M ( t , z ) -  

The following theorem (see [Da], [GI) establishes the connection between control 

problems on a finite time interval and problems on an infinite time interval. 

Theorem 2.1 Under the above assumptions, we can conclude: 
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( i )  For each t E [a,  b] ,  there exists a unique operator Q ( t )  E C+ such that Q k ( t )  + 

Q ( t )  strongly and the convergence is uniform in [a,  b] .  Therefore & ( e )  is strongly 

continuous, so uniformly bounded in [a,  b] .  

(i i)  As a consequence of (i), we can define the perturbed evolution systems S k ( - ,  e ) ,  S(., e )  

corresponding to the perturbation of T( . ,  -) b y  -BR-'B*Qk and -BR- 'B*Q re- 

spectively. We have Sk( t ,s)z  + S(t,s)z,  for  all z E H ,  and a 5 s < t < b. 

Furthermom the convergence is uniform in t for  t E [s ,  b] .  If T( . , . )  is jointly 

strongly continuous, then the convergence is uniform for  all a < s < t 5 b. 

The only assumption on the sequence { t k }  is that  t k  increase as a function of 

I C .  In particular, the above theorem is valid when t k  --+ 00, as IC + 00. Paralleling 

the usual approach to finite dimensional regulator problems, we can use these results 

to  establish results for the control problem on an infinite time interval. To that end, 

consider a sequence { t k } i Z l  with t k  --f m as IC --+ 00. Let Qk(*) ,Sk ( . , - )  be defined 

as above. If for each t 2 t o  we can find a constant M ( t )  such that < Q k ( t ) x , x  > H <  

M(t)llxll', then by Theorem 2.1, we have Q ( . ) ,  S ( . ,  .) defined on [to, m). Furthermore 

for any ( t , s )  E &,(to), Q satisfies 

(2.9) & ( S I X  = T * ( t , s > Q ( t ) T ( t , s ) z  + I' T*(v,s)pv(v)T(v, ~ ) x d v  

The equation (2.9) is called the Riccati integral equation (RIE) for the infinite time 

interval. We know from Theorem 2.1 that Q is strongly continuous and uniformly 

bounded in any bounded interval, but Q is not necessarily uniformly bounded in the 

entire interval [to, m). If Q is not uniformly bounded, that  implies the minimal cost p 
, for some initial state z will tend to infinity as t k  tends to  infinity; that  is, there is 

no control yielding finite cost for the infinite time interval problem. Let us state a 

condition which prohibits this situation. 

Definition 2.1 (W-stabilizability) W e  say that (2. I ) ,  (2.2) is W-stabilizable if 
I there exists a constant M such that for  any s 2 t o  and x E H ,  we can find a control 
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u E L*( [to,  0); U )  satisfying 

One can then prove (see [DIl], Theorem 3.1) that Q = limQk is a uniformly bounded 

solution of the Riccati integral equation (2.9) in [ t o , 0 0 )  if and only if (2.1), (2.2) is 

W-stabilizable. In this case we have Q(t)  5 M - I for t E [to, 00). Furthermore, 

if Q is any other bounded self-adjoint solution of (2.9), we have that Q(t)  < Q ( t )  

for t E   to,^). It follows that using any sequence { t k }  with t k  3 00, in the above 

limiting procedure yields the same solution Q to (2.9), which we shall refer to as the 

minimal bounded nonnegative self-adjoint solution of the Riccati integral equation 

on   to,^) and denote by Qmin. 

We note that if the system (2.1), (2.2) is W-stabilizable, then for any s 2 t o  

and z E H ,  the unique optimal control for the infinite time interval problem is given 

by ~ ( t )  = -R-'(t)B*(t)Q(t)S(t, S ) X .  

Next we consider a uniformly bounded solution Q of (2.9) and let 9 be the 

evolution operator corresponding to the perturbation of T by -BR-'B*Q. We say 

that Q is a stability solution of (2.9) if S(t ,s)z  t 0 as t t 00 for all s 2 t o ,  z E H .  

It is shown in [DIl] that there is at most one stability solution of (2.9). More- 

over, if Q is a stability solution satisfying Q ( t )  < M - I and Qk is the solution on 

[to,  t k ]  with Q k ( t k )  = M - I ,  then Q ( t )  5 Q k ( t )  for t E [to,  t k ]  and Qk( t ) x  -+ Q ( t ) x  as 

IC + 00 for each z E H .  In addition, if Q is any uniformly bounded solution, then 

Q(t) 5 Q( t ) ,  t E   to,^); that is, any stability solution is the mazimal (uniformly 

bounded) solution. Finally, if the system (2.1), (2.2) is W-stabilizable and if the 

minimal solution Qmin of (2.9) is a stability solution, then it is the unique uniformly 

bounded solution of the RIE (2.9). 

From the above remarks, it is clear that it is desirable to have conditions that 

guarantee a solution of the RIE be a stability solution. One such condition is a 

detectability condition. 
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Definition 2.2 (W-detectability) Let V ( t )  = d%. We say that the system 

(2. l ) ,  (2.2) is W-detectable if there exists a uniformly bounded function I<(.) with 

K ( t )  E L ( H )  such that the evolution operator T,yv corresponding to the perturbation 

of T b y  It'V is uniformly exponentially stable. 

We then have the following result. 

Theorem 2.2 Suppose that the system (2.1), (2.2) is W-stabilizable and W-detectable. 

Then the minimal solution Qmin of the RIE is the unique uniformly bounded solution 

of (2.9) and the evolution operator S defined b y  perturbation of T by  -BR-'B*Q,;, 

is uniformly exponentially stable. In fact, 

where the constants A4 and Q depend only on the bounds for B ,  It', R-', Qmin and 

M K v ,  ,B in the bound IITKv(t, s)II 5 MKV exp { -P( t  - s ) } .  

The first part of this theorem follows from [DIl] (Prop. 3.3). That the con- 

stants M and Q depend only on the bounds indicated follows from use of the modified 

Datko lemma, Lemma 2.1 above. As we shall see in the next section on approxima- 

tion, this dependence (or lack thereof) will allow us to infer a uniform exponential 

stability of the approximate feedback control systems whenever we have a uniform 

W-detectability condition satisfied by the approximate systems. 

To conclude this section, we recall that an evolution operator is said to be 

O-periodic if for any ( t , s )  E & , ( t o ) ,  we have T(2 + 8,s -+ 19)z = T ( t , s ) z ,  for all 

5 E H .  We note that any &periodic evolution operator satisfies the exponential 

growth assumption that is part of our standing assumptions in this paper. It is 

also easily argued that if the linear quadratic regulator problem is &periodic (;.e., 

B,W,R and T of (2.1), (2.2) a.re &periodic), then the minimal solution and the 

stability solution of the RIE are O-periodic. Of course, we cannot argue that every 

uniformly bounded solution of the RIE is periodic under a periodicity assumption on 

the problem. 
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We turn next to approximation results for the abstract linear regulator problem 

on an infinite time interval. 

3 Approximation of linear quadratic regulator problems on 
an infinite time interval 

Let H N  and U N  be families of finite dimensional subspaces of the original state space 

and control space H,U respectively. For each N an approximate control system is 

described by 

where TN(. , . )  : A,(to) H L ( H N )  is an evolution operator, and BN( . )  : U N  H H N .  
The cost functional is given by 

< W N ( t ) x N ( t ) , x N ( t )  > H  dt 

< RN( t )uN( t ) ,  u N ( t )  >u dt 

where x N ( . )  satisfies (3.1) and x N ( t o )  = x:. Suppose that each of the approximate 

systems satisfies the standing assumptions for (2.l), (2.2) given above and that each 

is W-stabilizable. Then we can guarantee existence of Q N ( - ) ,  the minimal uniformly 

bounded solution of the associated Riccati integral equation on the infinite time in- 

terval [to, 00). Let SN( . ,  .) be the perturbed evolution operator corresponding to the 

perturbation of T N  by -BN(RN)-'B*NQN. In this section, we present results on the 

convergence of Q N ,  S N .  

We need to make some basic assumptions on the approximate systems. Let 
{ H  N c a  } N = l ,  {U N c a  } N = l  be subspaces of H ,  U respectively, and P / ,  P$' be projection 

operators which are assumed to satisfy llP$x - x l l ~  + 0, IIP$zl - ullu + 0, as 

N + 00, for all x E H,u  E U .  

We note that the usual orthogonal projections of H and U onto H N , U N  re- 

spectively satisfy these assumptions if H N ,  U N  approximate H and U in an appropri- 
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ate  sense. (We shall specify approximation systems that satisfy these conditions in 

subsequent sections.) We make the further assumptions on our approximate systems. 

Hypothesis 3.1 (Uniform boundedness) 

( i )  There exist constants M 2 1 and w > 0 such that 

hold for  all N and ( t , s )  E &,(to); 

(ii) There exists a constant II'B such that 

for all N and t E [to, 03); 

(iii) There exists a constant Kw such that 

for all N and t E [ to ,  03). Furthermore W ( t ) ,  W N ( t )  are nonnegative definite 

self-adjoint for all t E [ to ,  03). 

(iv) There exists a constant II'R such that 

for all N and t E [ to ,  03). In addition, R( t ) ,  RN( t )  are positive definite self- 

adjoint for all t E [to, 03). There exists a constant r > 0 such that R( t )  > r - I ,  

RN( t )  2 r I ,  for all t E [to, 03). 

Hypothesis 3.2 (Pointwise convergence) The operators T N ( t ,  s ) ,  T f N ( t ,  s ) ,  BN( t ) ,  

B*"(t), G N ,  W N ( t ) ,  RN( t )  converge strongly to T ( t , s ) ,  T* ( t , s )  , B(t ) ,  ~ * ( t ) ,  G, 
W ( t ) ,  R(t)  for any t o  5 s 5 t < 03, where G, GN are nonnegative self-adjoint opera- 

tors in L ( H ) ,  L(H")  respectively. 
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From arguments in [DIl] and [W], it is readily seen that W-stabilizability (i.e. 

condition (2.10)) is equivalent to the following: there exists a constant M > 0, and a 

uniformly bounded feedback operator I ( ( . )  : [to, 00) H L(H,  U )  such that if TK(- ,  .) 
is the perturbed evolution operator corresponding to the perturbation of T by B K ,  
then for any s 2 t o ,  x E H ,  the cost of the feedback control u ( t )  = B(t)K(t)Th.(t, s ) x  

satisfies J,(u; s ,  x) 5 Mllx112. 

To guarantee the existence of uniformly bounded solutions of the Riccati in- 

tegral equation on the infinite time interval for each of the approximate systems, we 

make a uniform W-stabilizability assumption. 

Hypothesis 3.3 (Uniform W-stabilizability) There exists a constant A4 > 0 

such that for  all N ,  there exist uniformly bounded feedback operators Ii"(.) : [ to ,  00) H 

L ( H N , U N )  satisfying the following: for  all s 2 to and x N  E H N ,  the feedback control 

u N ( t )  = BN(t )KN(t )TEN(t ,  s ) x N  has a cost satisfying 

Now consider { t k } E l  with t k  + 00 as E --t 00. For each N ,  let E+N be 

the set of nonnegative self-adjoint linear operators in H N ;  we define the map A C  : 
.EtN H C,( [ to ,  t k ] ;  PN)  via the finite dimensional Riccati integral equation on [ to ,  tl;] 

as before. Let G E E+, and GN E DN. Define & ; ( e )  = h r G N ,  and Q k ( - )  = 

AkG. Let the evolution operators SF and S k  correspond to the perturbation of 

T N ,  T by -BN(RN)- 'B"Q? and -BR-'B*Qk respectively. The theories of the 

approximation of linear quadratic control problems on a finite time interval (e.g. 

see [GI, [BKl]) guarantee that under Hypothesis 3.1, 3.2, for each IC, Q f ( t )  and 

S;(t,s) converge strongly to Q k ( t )  and Sk(t ,s)  respectively as N + 00 for every 

t o  5 s 5 t 5 t k .  Furthermore the convergence is uniform in the interval [ to ,  tl;], if we 

replace Hypothesis 3.2 by the following assumptions. 

Hypothesis 3.4 (Continuity and uniform convergence) The operator valued 

functions B( t ) ,  B*(t) ,  W( t ) ,  R(t)  are strongly piecewise continuous in t (with only a 
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finite number of discontinuity points in any bounded interval); the evolution operators 

T ,  T* are jointly strongly continuous. The convergences in Hypothesis 3.2 are uniform 

in t and ( t , s )  on any bounded interval. 

From the theory of the linear quadratic control problem for the infinite time 

intervals, there are two cases where Q r  converges strongly as IC t 00. In the first 

case, let QEi,(t) be the minimal uniformly bounded solution of the Riccati integral 

equation in H N  on the infinite time interval [to, 00). If G = GN = 0, then for any N 
we have Q r ( t ) x N  + Qci , ( t )xN,  as IC t 00. Furthermore the convergence is uniform 

in t for t in any bounded interval [to, t j ] .  In the second case, we assume the following 

conditions hold: 

Hypothesis 3.5 Assume that there exists a stability solution Q S ( - )  of the Riccati 

integral equation fo r  the infinite time interval infinite dimensional system and there 

exists a stability solution Q,"(.) of the Riccati integral equation on the infinite time 

interval for  each approximate system. (Then the evolution operator SN  corresponding 

to the perturbation of T N  b y  -BN(RN)-lB*NQ," satisfies S N ( t , s ) x  t 0,  as t t 00, 

for  s 2 t O , x  E H N . )  Furthermore assume that there exists a constant M such that 

for  each N ,  Q f ( t )  5 M - I for all t 2 t o .  Also assume Q 3 ( t )  5 M - I for  all t 2 to.  

Assuming that Hypothesis 3.5 holds, we let G = GN = M I and Q r ,  Qk be 

the solutions of the RIE on [to,tk] satisfying Q r ( t k )  = G N ,  Qk( tk )  = G. Then from 

our results for stability solutions given in section 2 we have Q r ( t ) x N  + Q,"(t)xN, 

Q k ( t ) x  t Q s ( t ) x  as k t 00 for all x N  E H N  and x E H .  

We note that if S N ( t , s ) x  + 0 uniformly in N ,  then we have Qk(s )  and Q r ( s )  

uniformly bounded for all IC and N .  To see this, we consider Qk,Q3 as given above. 

Then we have, using the relationship in (2.7) with y ( t )  = S ( t , s ) x  where S is the 

evolution operator corresponding to the perturbation of T by -BR-'B*Q,,  
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Since y ( t k )  + 0, it follows using the uniform boundedness principle that Qk(s )  is 

uniformly bounded for all IC. Repeating this argument with Q F ( s ) ,  Q Y ( s )  and y N ( t )  = 

S N ( t , s ) x ,  we see that the uniform (in N )  decay of SN yields the claimed uniform 

boundedness for Q f  (s). 

In each of the two cases above, we have the following situation: 

It is desirable in computations to work directly with QY and hence we seek 

results which will guarantee the convergence QY + Qs of this diagram. To obtain 

such a result, we shall make use of a uniform decay rate for the S N  defined via Q f .  

Theorem 3.1 Assume that Hypothesis 3.1-3.3, 3.5 hold. Further assume that for all 

s 2 to ,  x E H and E > 0 ,  we can find t* such that for all t 2 i, we have IlS(t, s)zll 5 E 

and IISN(t,s)P/xII 5 E for  all N .  Then Q f ( t ) P / x  -+ Q,( t ) z  for  all t o  5 t < 00. 

Proof: Let M be the bound for Qs and QY that are the stability solutions of 

Hypothesis 3.5. Let QF and Qk be the related RIE solutions on [ t o , t k ]  satisfying 

Q F ( t k )  = M I ,  & k ( t k )  = M I .  Then for t 5 t k  we have 

b 
Recalling that Q F ( t )  2 Q f ( t ) ,  Q k ( t )  2 Q s ( t )  by construction, and using the uniform 

boundedness of Q," and QY following from the uniform decay rate and the arguments 

above, we obtain for some h;r I 
II(QY(t) - Q,"(t))PHNxII' L < ( Q f ( t )  - Q,N(t))PHNz, PHNx > H  

I I ( Q s ( t )  - & k ( t ) ) X l 1 2  5 2&f < ( & k ( t )  - Q s ( t ) ) x , x  > H  . 
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Again using (2.7), we have I 
i and 

Combining the above inequalities, we obtain 

I 
Let IC be large enough so that IlS(tk, t)xll L t / ( l 2 M k ) ,  IISN(tk, t)P,”xII I ~ / ( 1 2 M k ) ,  

~ 

for all N .  Then let N be large enough to obtain IIQr(t)P;INx - Q k ( t )  x1I2 5 c / 3 .  From 

the previous estimates we thus find I lQY( t )P/x  - Qs(t)x1I2 5 E which yields the 

desired results. 

We note that if Hypothesis 3.4 holds and the uniform decay assumption in 

Theorem 3.1 is replaced by the following: there exists i such that for any t 2 t̂  and 

for any s E [ t o , t j ] ,  IlS(t + s,s)xll 5 e ,  IlS”(t + s,s)P[x11 5 E ,  for all N, then the 

convergence of Theorem 3.1 is uniform in the bounded interval [to, t j ] .  

Theorem 3.1 is not very useful in practice, since the uniform decay assump- 

However it does provide some insight and sug- tion is difficult to  verify directly. 
I 

I gests more realistic conditions that might be verifiable. Recalling the definition of 

W-detectability and our discussions following it, we are prompted to formulate the 

, following assumptions. 

Hypothesis 3.6 (Uniform W-detectability) The originaZ system is detectable 

and there exist constants MI;, MKV and p > 0 such that f o r  each N ,  there exists a 

uniformly bounded operator valued function ICN(.) : H N  H H N ,  with l l I C N ( t ) l l L ( H ~ )  5 
M K ,  for  t E [to, co). If TEN is the evolution operator corresponding to  the perturba- 

tion of T N  b y  I C ” m ,  then IIT~N(t,s)llL(”] 5 Afl;ve-P(t-s), f o r  ( t , s )  E &(to). 
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If the Hypothesis 3.6 holds, then QZin is the unique uniformly bounded solu- 

tion of the Riccati integral equation on the infinite time interval for H N .  Under the 

uniform W-stabilizability Hypothesis 3.3, we have QKin(t)  5 M . 1 ,  for all t E [ to ,  00). 

Furthermore, by application of Theorem 2.2, there exist constants M s , a  > 0 inde- 

pendent of N such that the evolution operator SN defined via Q,”;, satisfies 

Thus, by Theorem 3.1, QZin( t )  converges to Qm;,(t) as N --f 00. We summarize the 

results in a major convergence theorem. 

i 

Theorem 3.2 Assume that our system and its approximate systems satisfy Hypothe- 

ses 3.1 and 3.2 and the uniform W-stabilizability and uniform W-detectability condi- 

tions of Hypothesis 3.3, 3.6. Then the unique uniformly bounded solution Q N  of the 

Riccati integral equation on [ to ,  00) in H N  converges strongly to the unique uniformly 

bounded solution Q of the Riccati integral equation on the infinite time interval in  H .  
Furthermore, if Hypothesis 3.2 is replaced b y  Hypothesis 3.4, then this convergence is 

uniform in t f o r t  in any bounded interval. 

We note that in the case of a periodic system, the uniform convergence in one 

period implies that Q N  converges to Q uniformly in the entire interval [ to ,  00). We fur- 

ther remark that the convergence of the Riccati operator guaranteed by Theorem 3.2 

is sufficient (using standard arguments, see [GI, [BKl]) to guarantee convergence of 

the optimal approximate feedback system trajectories S N ( t ,  s)P/a: and optimal ap- 

proximate controls uN to the optimal system trajectories S ( t ,  s)a: and optimal controls 

u (see Theorem 3.1 of [BKl]).  Moreover, one also obtains convergence of the system 

generated by using the approximate feedback gains with the original infinite dimen- 

sional control system (a feature that is of great practical importance), e.g., see the 

related remarks in section 4 of [BKl]. 

The hypotheses of Theorem 3.2 are much more readily verified than others 

guaranteeing convergence that can be found in the literature (e.g., see [GI, Theorem 
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5.3, where one is required to show that the approximate systems are uniformly sta- 

bilized by the feedback with a uniformly bounded sequence of approximate Riccati 

operators). As we shall see in the later sections, there are two distinct approaches 

that lead to rather easy use of our Theorem 3.2 in the event one is dealing with 

parabolic evolution sys tems. 

4 Parabolic evolution equations: control and approxima- 
t ion 

In this section, we formulate the linear quadratic regulator problem for an abstract 

parabolic control system. We focus our attention on systems associated with a time 

dependent sesquilinear form. First we review the theory of parabolic evolution equa- 

tions (relying heavily on [TI) and extend some related results in a form applicable to 

control problems. Then a control system is defined for which general assumptions of 

stabilizability and detectability are made. A framework for approximation schemes 

is presented and conditions for convergence of the operators involved are discussed 

under assumptions of uniform stabilizability and uniform detectability for the ap- 

proximate systems. Our discussions here are in the spirit of the approaches taken in 

[BKl], [BIl], [BI2]. 

Let H ,  V be two complex separable Hilbert spaces with < e ,  - > H ,  < -, - > v  as 

inner products and )I l l ~ ,  11 IJv as norms respectively. Let V* be the dual space of V 
with < ., >vl,v denoting the duality pairing. The space V is assumed to  be densely 

and continuously embedded in H ,  and thus there exists a constant c such that for all 

1c, E V ,  II$IIH 5 cII$llV. Since for each element 9 of H ,  we can define a bounded linear 

functional on V by < q,$ > H ,  for 1c, E V ,  we have the usual embedding relationship 

V c H c V*.  

For each t in the interval [ t o ,  oo), consider a sesquilinear form a(t;  a ,  e) defined 

on V x V .  We assume throughout that a has the following properties: 

Hypothesis 4.1 (V-Continuity) For each bounded interval [ t o ,  t l ] ,  there exists a con- 



stunt c1 such that 

Hypothesis 4.2 (V-Ellipticity) For each bounded interval [to, t l ] ,  there exist con- 

stants c2 > 0, m such that 

Under the above assumptions, we have a well known ([FM], [ K ] ,  [TI, [SI) result: 

For each t E [to,t l] ,  there exists a unique closed operator A ( t )  : V H V* such that 

Furthermore, if act) is defined using the same method with a sesquilinear form a* 

defined by a*(t; c p ,  $) = a(t;  $, c p ) ,  then act) is identical to the adjoint operator A*(t) 
of A(t).  Both operators A(t ) ,  A(t)* are infinitesimal generators of analytic semigroups 

in V* and an abstract parabolic evolution equation can be defined by 

d 
dt -X(t)  = A(t)X(t) ,  X(t0) = 50 E V*. 

In order to insure the existence of an evolution operator for this equation, we must 

make additional assumptions on the continuity of a with respect to t .  

Hypothesis 4.3 (Smoothness in t ) For each bounded interval [ to , t l] ,  there exist 

constants I( and C Y ,  0 < CY 5 1, such that for  all t , s  E [to,  t l ] ,  and for  all c p , $  E V ,  
we have 

10( t ;V7$)  - 0 ( s ;  Y ,$) l  5 Ii'lt - slallYllVII$IIV. 

Under the above assumptions, there exists an evolution operator associated 

with the above evolution equation. The following theorem summarizes the properties 

of this evolution operator. 

Theorem 4.1 ([TI, pp.127, pp.145-155) Let the Hypotheses 4.1, 4.2, 4.3 hold. Then 

there exists a unique evolution operator T(. ,  e )  in V* satisfying the following condi- 

tions: 

e 
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(i) For any to  5 s < t 5 tl, the range R ( F ( t ,  s ) )  of operator p ( t ,  s )  is a subset of 

V .  

( i i )  The operator F(t ,  s ) A ( s )  has a unique bounded extension in L ( V * ) ,  for  all t o  5 
s < t 5 t l ;  therefore, we can and will use the same expression for  the extension. 

(iii) For each y E V*,  the V*-valued function p(t,s)y is continuously diflerentiable 

in t for  t E ( s , t l ] ,  and continuously diflerentiable in s for  s E [ to ,  t ) .  Further- 

more, for y E V* 

(iv) The restriction o f p ( t , s )  on H is strongly continuous in the H norm. For all 

20 E H ,  the junction x( t> = ?(t ,  s)xo is in ~ ~ ( [ s , t ~ ;  V )  and the derivative 

i ( t )  = A(t)F(t ,  s)zo is in L2( [ s ,  t l ] ;  V*) .  Furthermore, there exist constants 

C1, C2, depending only on c1, c2, m, I< and cr such that 

All the statements in the above theorem can be found in [TI. However they are 

organized into several sections with somewhat different notation; we therefore give a 

brief argument which collects the results from the book. 

Proof Existence. Taking X = V*,  we let A ( t )  be defined as in (4.3). As indicated 

in [TI, (pp. 144), using Theorem 5.2.1 of [TI, we find there exists an evolution operator 

p on V*. The range R ( F ( t , s ) )  is a subset of D ( A ( t ) )  = V for all to 5 s < t 5 t l .  

For any y E V*,  p ( t ,  s ) y  is continuously differentiable in t for t E ( s ,  tl]. Now let the 

sesquilinear form CY* be defined by 
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Let A*(t)  be the linear operator defined via a*; then A*(t)  is the adjoint operator 

of A ( t ) .  As indicated by the remarks following Lemma 5.4.6 of [TI, we can use the 

results of section 5.2 (with s and A* replacing U and A of [TI) to construct an 

operator-valued function s ( t , s ) ,  such that for all to 5 s < t 5 t l ,  A*(s )S ( t , s )  is a 

bounded operator in V*,  and for any y E V*,  s( t ,s)y  is continuously differentiable 

in s for s E [to$). Furthermore, for y E V* 

In fact, S ( t , s )  can be constructed as follows. Let exp{tA’(s)} be the semi-group 

generated by A*(s)  and we define 

S ( t , s )  = exp{(t - s )A*( t )}  + W ( t , s ) ,  
t 

W(t , s )  = exp((7 - s ) A * ( ~ ) } R ( t , ~ ) d 7 ,  

where the function R can be computed by iterative methods using 

R ( t 7  - 6’ R l ( r ] 7  s )R( t ,  r ] ) d r ]  = Rl( t7  ’ 1 7  

with Rl(t ,  s) = ( A * ( t )  - A*(s))  exp{(t - s)A*(t)} .  Then following the same type of 

arguments as in [TI (pp. 149), we can conclude that S ( t , s )  = P* ( t , s ) .  Therefore 

P( t ,  s )A( s )  has a unique bounded extension in V*. For all c p  E V*,  P(t ,  s)cp is strongly 

differentiable in s for s E [ t o , t ) .  

Finally statement (iv) of the above theorem can be found in the sections 5.4 

and 5.5 of [TI. We note that in these sections of [TI, the space X plays the role of our 

space H .  Let T ( t ,  s) be the restriction of P ( i ,  s) to H ;  by Theorem 5.4.1 of [TI, T( t ,  s) 

is strongly continuous in the H norm. Furthermore the estimate (4.4) holds. For any 

xo E H ,  let x ( t )  = T(t ,s)zo.  By Lemma 5.5.2 and Proposition 5.5.1 of [TI (pp. 152 

- 153) with f 0, the function x(.) is in L2([s,tl]; V )  and i(.) is in L2([s,i l];V*).  
In addition, the estimate (4.5) holds. We note that the constants C1, C2 depend only 

on the constants c1, c2, m, I( and a. 
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Uniqueness. By Theorem 5.2.3 of [TI (pp. 128), we can conclude that the 

evolution operator satisfying the conditions ( i )  - (iv) must be unique. 

We remark that the same theorem holds if we use the sesquilinear form a*; 

therefore, properties (i) - (iv) hold for the adjoint evolution operator p*( - , . ) .  As 

consequence of (iv), the restriction T of p to H is an evolution operator in H as 

defined in the section 2. We wish to take H as our state space; therefore we use 

primarily the evolution operator T in this paper. The operator is used in the 

remainder of the current section in several proofs of uniqueness theorems. The only 

precaution one must ta.ke is that  T( t ,  s ) ~  is continuously differentiable with respect 

to  t in the V* sense and the derivative of T ( t , s ) V  is an element of V*.  In particular, 

for each $ E V ,  < T ( t ,  s ) ~ ,  II, > H  is differentiable with respect to t ,  and 

The conclusions of this theorem are very useful in defining our control system; 

however, the conditions of Hypothesis 4.3 are too restrictive for our use, since we may 

need to perturb the equation with nonsmooth but bounded (feedback) terms. We can 

show that if a is perturbed with a sesquilinear form that is uniformly bounded in H ,  
then there exists an associated evolution operator TK which preserves most of the 

desirable properties of the evolution operator T .  In fact, let It'(-) : [to,oo) H L ( H )  
be a uniformly bounded operator valued measurable function. We can then define a 

sesquilinear form c r ~  in V x V as 

It is easy to  see that for each bounded interval [ t o , t l ] ,  Hypotheses 4.1 and 4.2 hold. 

Therefore, we can find an operator A K ( t )  defined on V such that (4.3) holds for 

aK and A,@).  Furthermore, we have by the definitions of A ( t )  and A K ( t )  that 

A K ( t ) V  = A( t ) y  + It'(t)V for E V and we may establish the following result. 

Theorem 4.2 Consider a sesquilinear form a satisfying Hypotheses 4.1, 4.2, 4.3 and 
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let  It?(.), OK be defined as above. Then there exists a unique evolution operator T K ( - ,  e )  

in H for  which the following properties hold: 

(i) The range R(TK(~,s)) of the operator T ~ ( t , s )  is a subset of V ,  for  all t o  5 s < 
t 5 t l .  

(ii) For y E H ,  the function Tl;(t ,s)y is diflerentiable with respect to t in the V' 
sense, and 

d 
K t ,  s ) y  = A K ( t ) T K ( t ,  .)y. dtT ( 

(iii) For all xo E H ,  the function x ( t )  = T K ( t ,  s)xo is in L 2 ( [ s , t l ] ;  V )  and its deriva- 

tive i ( t )  is in L2([s,tl]; V * ) .  Furthermore, there exists constants G1, C2 depend- 

ing only on c1, c2, m, Ii' and cy such that 

Proof: Existence. Let TK be the unique evolution operator in H corresponding to  

the perturbation of T by I( .  From the results on perturbations given in section 2, we 

have that 7'K satisfies for all y E H 
t 

(4.6) TI& 49 = 5% s)v + 7% 77W(17)TK(7] ,  4947 
t 

T K ( t ,  .)cp = 5% 453 + J T K ( 4  77)I{(77)T(777 s)yd77. 

Since the function I i ' ( v ) T ~ ( q ,  s ) y  is uniformly bounded in H norm by some constant 

C ,  using the estimate (4.4), we can find a constant such that for 77 E [ s , t ]  

Therefore the integral term in equa.tion (4.6) converges in the V sense and hence, 

T ~ ( t , s ) y  E V for y E H .  

Consider xo E H ,  we define x ( t )  = TK(t,tO)xg, and f ( t )  = I i ' ( t )x( t ) .  From 

equation (4.6), the function z ( t )  can be written as 
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By the strong continuity of T K  and uniform boundedness of Ii', it is obvious that 

f(.) E L2([t0,t l] ;H) and hence f(.) E L 2 ( [ t 0 , t l ] ;  V*).  By Theorem 5.5.1 of [TI, $ ( e )  

is in L2([t0,  tl]; V ) ,  is differentiable with i(.) in L2([t0,  tl]; V * )  and satisfies i ( t )  = 

A K ( t ) x ( t ) .  Using the equality (4.6) and the boundedness of the perturbation, by 

modifying the constants C1, C2 in (4.4), (4.5), we can easily obtain 

for all p E H .  

Uniqueness. Let 5 ! ~  satisfy the conclusions ( i )  - (ii) of Theorem 4.2. For all 

y E H ,  consider ?~,- ( t ,s )y  as a V* valued function. Then we have 

Integrating both sides of the above equation from s to t ,  we obtain 

Since T is the restriction of to H ,  f ' ~  is a solution of (4.6). By our uniqueness 

results of section 2 for perturbed evolution opera.tors, we have TK = TI<--. Hence the 

unique solution of (4.6) is the unique evolution operator TK generated in the theorem. 

Now consider a function f(-) E L2( [ t o ,  t l ] ;  H ) .  We can then define 

The function z ( . )  is the unique solution of the following initial value problem: 
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Henceforth, we consider (4.7) as the definition of our basic evolution system. The 

function z corresponds to the solution of a weaker formulation of the evolution equa- 

tion. 

Lemma 4.1 ([TI,  Theorem 5.5.1) The function z ( . )  given b y  (4.7) is the unique 

function in  L2([to,  t l ] ;  V )  with derivative i(-) in L2([t0, t l ] ;  V* )  for which the following 

equation holds for $I E V 

Lemma 4.2 ([TI, Lemma 5.5.1) For a n y  two functions z(.),w(.) in L2([t0,t1]; V )  
with derivatives i, .ri, in L2([ t0 ,  t l ] ;  V* ) ,  the following equality holds: 

for all t o  5 s 5 t 5 t l .  

As a consequence, for any 20 E H ,  let x ( t )  = T(t,to)zo, then 

(4.9) 
J to 

We note that if Hypotheses 4.1 - 4.3 hold, then for each bounded interval 

[ to ,  t l ] ,  we can define T( t ,  s) uniquely, therefore T( t ,  s) is also uniquely defined for all 

t o  5 s 5 t < m. The equality (4.9) suggests a sufficient condition for the stability of 

T .  

Hypothesis 4.4 There exists a constant k > 0 such that 

Theorem 4.3 Under Hypothesis 4.4, T is uniformly exponentially stable. 
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Proof: For any xo E H ,  let x ( t )  = T( t , s ) xo .  Then by (4.9), we have 
t 

Il4t)ll; 5 l lxol l i  - 2 1 ~1l~(77)1l2d77, 

IIT(t7S>IIL(H) 5 1,  1 II~(77,S>xoll; 5 ~ I l ~ O I l i .  

for all t o  5 s 5 t < 00. This implies 

t 1 

Therefore, by Lemma 2.1, T is uniformly exponentially stable. Note, moreover that 

by Lemma 2.1, under Hypothesis 4.4, we can find M ,  a > 0 depending only on IC such 

that 
< Me-”(t-”) 

IlT(t74IlL(H) - 

We can now use these considerations to define an evolution equation con- 

trol system of the form (4.7) via a sesquilinear form. The space H will serve as 

our state space, with subspace V and the sesquilinear form 0 defined as above and 

Hypotheses 4.1-4.3 holding. Let the control space U be a Hilbert space, and let 

B ( - )  : [ t o ,  00) H L(U, H )  be a mea.surahle operator-valued function. We assume that 

there exists a constant h/r, such that 

I 

~ 

I 

For any control u( . )  : [ to ,  00) H U ,  belonging to L2([ t0 ,  00);  U ) ,  the corresponding 

trajectories satisfy for qh E V 
t 

(4*10) < Z ( t >  - z ( s ) ,  $ > H =  - 1 {u(7]; Z(77)7 $)- < B(v)U(v), ‘$ > H }  dq, 

for all ( t , s )  E &,,(to). Let ? ‘ ( - , e )  be the evolution operator defined via u. By 
I Lemma 4.1, an equivalent form of (4.10) is given by 

(4.11) Z ( t )  = T ( t , s ) z ( s )  + J’7?,77)B(dU(V)d77, for (Q) E A&,). 

Let zo E H be the initial state of the system at to and let the cost for control u ( - )  be 

given by 

(4.12) 
I 

J,(tt;zo,to) = lopo < k V ( t ) z ( t ) , t ( t )  > H  + < R( t )u ( t ) ,U( t )  >u d t ,  
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where W(. )  : [to, m) H L ( H ) ,  R ( - )  : [to, 00) H L(U).  The operators W ( t ) ,  R(t)  are 

assumed to be selfadjoint nonnegative definite operators, uniformly bounded in the 

entire interval [to, m). Furthermore, there exists a constant r > 0 such that 

Recalling the discussions of section 2, we note that the standing assumptions 

of that  section hold. Therefore, for a given nonnegative definite self-adjoint operator 

G on H ,  the Riccati integra1 equation in ea.ch finite time interval [to,  t k ] ,  

has a unique self-adjoint solution Qk. 

For the control problem in the infinite time interval [ to ,  m), we need stabiliz- 

ability and detectability conditions to assure existence and uniqueness of a uniformly 

bounded solution of the Riccati integral equation. 

Hypothesis 4.5 (Detectability) There exists a uniformly bounded operator valued 

function Q( . )  : [to, 00) H L ( H ) ,  such that if we denote b y  SQ the evolution operator 

corresponding to the perturbation of T b y  Q(.)W1/2(e), the following estimate holds 

for  x E H :  

1 )  SY ( t  , +llH L II+I, 

for  some constants M ,  w > 0. 

Hypothesis 4.6 (Stabilizability) There exists a uniformly bounded operator valued 

function I<(.) : [ to ,  m) H L ( H ,  U ) ,  such that if we denote b y  SK the evolution operator 

corresponding to the perturbation of T b y  B( . )K(- ) ,  the following estimate holds for  

x E H :  

IlSK(t, S ) X I l H  L ~fe-w(t-s)l lxIIH, 

for  some constants M ,  w > 0. 

27 

I 



We remark that Hypothesis 4.6 is stronger than “W-Stabilizability”; however 

under the Hypothesis 4.5 by Theorem 2.2, these two types of stabilizability assump- 

tion are equivalent. 

To this point we have defined a control system using an abstract parabolic 

evolution equation that fits into the general framework of section 3. Under Hypothe- 

ses 4.5 and 4.6, we may a.pply the theory of the previous sections to establish the 

following results for our control problem: 

( i )  The R.iccati integral equation in the infinite time interval [ to ,  m) has a unique 

uniformly bounded solution & ( e ) .  

(ii) Let SQ be the evolution operator corresponding to the perturbation of T(. ,  .) by 

-BR-lB*Q(-). For each initial state 20, the unique optimal trajectory is given 

by sQ(t, t0)zO. 

We turn next to give results for finite dimensional approximations of our con- 

trol system. As in section 3, let be a sequence of finite dimensional sub- 

spaces of V c H .  Let P/ be the orthogonal projection operator from H onto H N .  
Since H N  is an approximation of H ,  we assume that for every y E H ,  IIPiy-ylIH --f 

0, as N + 00. In addition, we require that H N  is an approximation of V as well, 

so that for all y E V ,  IIP:y - yllv -, 0, as N + 00. We note that in fact this 

latter convergence implies the convergence in H for y E H since V is continuously 

and densely embedded in H .  

Let { U N } c = l  be a sequence of finite dimensional subspaces of U .  Let P[ be 

the orthogonal projection operator from U onto U N .  We assume U N  approximates 

U in the following sense: for E U ,  llPEv - vllu + 0, as N --f m. 

For each N ,  we define a sesquilinear form oN as the restriction of o to H N  x H N  
and define a linear operator AN(t )  : H N  H H N  by 

By continuity of u with respect to t ,  the operator valued function AN( t )  is * continuous 
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in time. As a consequence, there exists a unique differentiable evolution operator 

T N ( - ,  - )  in H N  generated by AN( t ) ;  that is for vN E H N  we have 

d 
- T N ( t , s ) v N  = A N ( t ) T N ( t , s ) v N .  
dt 

Note immediately that the 0”s satisfy the Hypotheses 4.1-4.3 with the same con- 

stants c1, c2, rn, CY and I<, therefore for each fixed interval [to,  t l ] ,  there exist constants 

C1, C2 independent of N such that for all vN E H N ,  

The approximation properties of the evolution operator T N  are summarized by the 

the following convergence theorem. 

Theorem 4.4 Let Hypotheses 4.1- 4.3 hold and let T ( - ,  e )  and TN( . ,  -) be defined as 

above where IIP/v - vllv + 0 as N --+ 03 for  9 E V ;  then the following properties 

hold: 

(i) There exist constants MT and w such that for all N ,  

(ii) For a n y  finite interval [a,  b] c [to, 00) and any 9 E H ,  we have 

Furthermore the convergence is uniform for all a 5 s 5 t b. 

Proof: ( i )  By Lemma 4.2, and (4.9) for every 9 E H N  we have 

IITN(t, 4vllk = IIvIIk - 2 I’ Re O N ( %  T N ( 9 , 4 v ,  T N ( %  s)v)4.  

Under Hypothesis 4.2, 



Using Gronwall’s inequality, we obtain 

Noting that the same estimates hold for T ( t ,  s ) y ,  we obtain (i) .  

( i i )  Let y E H, define ~ ( t )  = T ( t , s ) y  and w N ( t )  = T N ( t , s ) P { 9  and let 

z N ( t )  = w ( t )  - w N ( t ) .  We note that z N ( t )  is not an element of HN, in fact 

Since w ( t )  is differentiable in the V* sense, w N ( t )  is differentiable, and both func- 

tions are in L2( [ a ,  b];  V )  with derivatives in L2( [ a ,  b];  V*) .  By (4.9), Lemma 4.2 and 

definitions of the operators A ( t ) ,  A N ( t ) ,  we obtain 

Since the duality pairing reduces to the H-inner product on H x H, we have 

Moreover, P{ is the orthogonal projection operator and hence the last term in the 

above equation equals to zero. Using the definition of u N ,  the sesquilinearity of o 

and (4.15), we find 
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Combining this with the previous equation, we have 

where @"(t,s)  is given by 

Using the V-ellipticity of oN,  we find 

(4.16) 

TO use Gronwall's inequality to conclude convergence of P{zN,  it suffices to show 

that loN(t ,s)I  goes to zero uniformly for all a s 5 t 5 b. By the continuity and 

uniform boundedness of T ,  the term IIT(t, s ) ~  - P i T ( t ,  s )q l l $  goes to zero uniformly 

for all a 5 s 5 t 5 b. Using the V-continuity of 0, the two integrals in 0 can be 

bounded by 

I 
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Using the inequalities (4.5) and (4.14), we observe that the functions w, wN are in 

a bounded subset of L2( [a, b];  V ) .  By dominated convergence arguments, the above 

integral converges to zero. Furthermore by taking t = b, s = a, we obtain that this 

convergence is uniform for all a _< s _< t 5 b. Therefore l oN( t , s ) J  converges to zero 

uniformly for all a _< s 5 t 5 b. Finally, from (4.15), we have 

and the uniform convergence of P[zN( t )  in t implies T N ( t , s ) P N p  converges to 

T( t , s ) y  uniformly for all a 5 s 5 t 5 b. 

Since we can define operators A*(t),A*N,T*(t,s) and T*( t , s )  by using the 

sesquilinear form u* as we indicated after (4.3), the convergence of T*N(t ,  s) to T*(t ,  s) 

can be shown using the same arguments as in the proof of the above theorem. 

Having defined our approximate (uncontrolled) system and established the 

convergence of Theorem 4.4, we return to the control problem for (4.10)-(4.12). Ap- 

proximations of functions B,  W, R are defined as follows: 

BN(.)  : [ to ,  00) H L ( U N ,  H N ) ,  
W"(*) : [ to ,00)  H L ( H N ) ,  

BN( t ) vN  = P"B(~)V", 
W N ( t ) v N  = P / W ( t ) y N ,  

v N  E U N ;  
vN E H N ;  
V N  E U N .  R y )  : [ to ,  0O) H L(U") ,  R N ( t ) v N  = PU"R(t)VN, 

Let G be the nonnegative selfadjoint operator in the finite interval cost functional 

associated in the usual manner with (4.12) for our control system in H .  Let GN = 

P/G and z t  = Pzzo. 

In each subspace H N ,  a finite dimensional control system is thus defined by 

(4.17) 

with t i N ( - )  E L2([t0,  00);  U N )  and z N ( t o )  = z:. The cost functionals for the associated 

finite time interval problems are given by 

32 



while the cost functional for the infinite time interval problem is given by 

To obtain the uniform convergence of the operator valued functions, we make 

additional assumptions on the continuity of B, W, R. 

Hypothesis 4.7 (Parameter smoothness) The operator valued functions B ,  W,  R are 

piecewise strongly continuous functions on [to, 00).  

Lemma 4.3 Under Hypothesis 4.7, the following convergence is uniform in t for t 
in any bounded interval: 

p?N(t)PU”2, - B ( t > V l l H  + 0, 2, E u; 
IIB*N(t)PHN~ - B*( t )~ l l v  + 0 ,  9 E H ;  
I I ~ V N ( t > G %  - W ) V l l H  -+ 0, y E H ;  
IIRN(t)PU”V - R(t)vllu -+ 0 ,  2, E u, 

as N t 00. The operator GNP/ also converges strongly to G as N + 00. 

Proof: We only prove the uniform convergence of B N ,  the remainder of the arguments 

being similar. For simplicity, we without loss of generality assume that the function 

t H B( t )  is strongly continuous. For a given v E U ,  the pointwise convergence of 

the functions B N ( t ) P $ v  to B ( t ) v  is given by our assumptions on the approximation 

properties of the spaces H N ,  U N .  To conclude uniform convergence in t ,  it is enough to 

show that the functions B N ( t ) P z u  are equi-continuous. That is, for any E > 0, there 

exists S > 0 such that for all N ,  if It-sl 5 6, we have IIBN(t)PU”Z,--BN(s)PzvIIH 5 E .  

By definition of B N ,  we have 
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By continuity of B,  we conclude that B”(t)P{v are equi-continuous functions of t in 

a bounded interval. Hence the convergence is uniform in any bounded interval. 

It is easy to  verify that B N ,  W N ,  RN are uniformly bounded and W N ,  RN are 

nonnegative self-adjoint operators. In addition there exists a constant r > 0 such 

that for all N ,  

Consider any finite time interval [to, tk] ,  and let Qk,QF be the unique self- 

adjoint solutions of the Riccati integral equations in H and H N  associated with the 

control systems (4.11), (4.17) respectively. Then it follows from Theorem 4.4 and the 

discussions of section 3 (in particular see Hypotheses 3.1, 3.2 and the remarks just 

prior to Hypothesis 3.4) that for each IC, Q r ( t )  converges to Q k ( t )  strongly and the 

convergence is uniform in t for t E [ to ,  t k ] .  

We assumed above (Hypotheses 4.5, 4.6) that the control system (4.10)-(4.12) 

in H is detectable and sta.bilizable. Therefore there exists a unique uniformly bounded 

solution Q of the Riccati integral equation on the infinite time interval [ t o , c o ) .  In 

order to approximate Q by a uniformly bounded solution of the Riccati integral 

equation in H N ,  we have to show that the approximate control systems defined here 

are also detectable and stabilizable. More importantly, recalling the results (e.g., see 

Theorem 3.2) of section 3, we need uniform detectability and uniform stabilizability 

for the approximate systems (4.17), (4.19). 

Based on the stabilizability and detectability properties of the original system, 

for a given approximation scheme, we would like to show that the following conditions 

hold: 

Condition US (Uniform stabilimbility) There exist constants MA-, M,w  > 0 inde- 

pendent of N such that for each of the approximate systems, we can find a uniformly 

bounded operator valued function K N ( - )  : [to,m) H L ( H N , U N )  such that 
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and if TE is the evolution operator corresponding to the perturbation of T N  b y  BNIt"(.), 
then 

llTF(t, s)llL(HN) 5 hIe-w(t-s) 7 f o r  ( 4 s )  E ~ C o ( t 0 ) .  
i 

Condition UD (Uniform detectability) There exist constants MQ, AI, w > 0 indepen- 

dent of N such that for  each of the approximation systems, we can find a uniformly 

bounded operator valued function Q N ( . )  : [to, 00) H L ( H N )  such that 

I 

IIQN(t)llL(") 5 MQ, 

and i f  T r  is the evolution operator corresponding to the perturbation of T N  b y  

Q N ( W N ) 1 / 2 ( - ) ,  then 

We may summarize our findings as follows. 

Theorem 4.5 Under Hypotheses 4.1-4.3, 4.5-4.7, the conditions 11 P / v  - vllv. + 0 

for  9 E V ,  llPtv - v11u + 0 for  v E U and the Conditions US and UD, there exists a 

unique uniformly bounded solution Q N  of the Riccati integml equation on the infinite 

time interval [to, 00) for  each approximate system in H N .  Furthermore, the sequence 

Q N ( t ) P l  converges strongly to Q ( t )  and the convergence is uniform in t f o r t  in any 

bounded interval. 

These results follow from Theorem 3.2 and our discussions above. We have 

thus reduced our problem of ensuring convergence of the R.iccati variables to one of 

guaranteeing uniform stabilizability and detectability of the approximate systems. In 

the following two sections, two different approaches to obtaining uniform detectability 

(Condition UD) and stabilizability (Condition US) are presented. 

5 Dissipativity and uniform stabilizability / detectability 

The original control system (4.10) defined in section 4 was assumed to  be stabilizable 

and detectable (;.e., we assumed Hypotheses 4.5, 4.6 held). For a given evolution sys- 
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tem, often an easy way to ascertain stability is using the dissipativity of the system. 

In particular, if a system satisfies Hypothesis 4.4, by Theorem 4.3 the associated evo- 

lution operator is uniformly exponentially stable. This naturally suggests a sufficient 

condition for stabilizability of a control system. 

Hypothesis 5.1 There exists a uniformly bounded function I{( . )  : [ to ,  00) H L ( H ,  U )  
and a constant I; > 0 such that for  all 9 E V ,  

a ( t ;  97 9)+ < B( t ) l ( ( t )97  9 > H  2 lcllVllL, f o r  E 

Lemma 5.1 Under Hypothesis 5.1, the control system defined b y  (4.10)-(4.12) is 

stabilizable. In  fact if T K  is the evolution operator corresponding to the perturbation 

of the evolution operator T b y  -BK, we can find constants M ,  CY > 0 such that 

, As a consequence there exists a constant C such that for  all xo E H ,  we can find a 

control u(.) E L2([s ,  00); U )  with a cost 

Proof Let I<(-) be the operator valued function in Hypothesis 5.1. Define the 

perturbed sesquilinear form a K ( t ;  9, $) = a(t;  9, $)+ < B(t)K(t)cp, $ >H.  Then T K  

is associated with as in Theorem 4.2 with -B( t )K( t )  as the perturbation term. 

Under our assumptions, by Theorem 4.3, there exist M,CY > 0 such that 

For any xo E H ,  let v ( t )  = - I i ' ( t )TK(t ,s)xo;  it is easy to see that the corre- 

sponding trajectory is x ( t )  = T K ( t ,  s)xo. 

By our standing assumptions, the operator valued functions W(. ) ,  R(.), B ( - )  
are uniformly bounded in the entire interval [to,  00). Take 

c 2 ( I I W ( t ) l l L ( H )  + I I I i* ( t )R( t ) I~( t ) l l~cH))M2/2a ,  for t 2 t o .  
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Then 

Similarly, a sufficient condition for detectability can be stated as following. 

Hypothesis 5.2 There exists a uniformly bounded operator valued function * ( a )  : 

[ to ,  0;)) H L ( H ) ,  and constant X > 0 such that 

Lemma 5.2 Under Hypothesis 5.2, the control system defined b y  (4.10)- (4.12) is 

detectable. 

In the remainder of the current section, we assume that Hypotheses 5.1, 5.2 

hold for our control system in H .  The strict H-dissipativity Hypotheses 5.1, 5.2 on 

the evolution systems are stronger than the usual stabilizability and detectability 

hypotheses; however, they are in general easy to  verify for a wide class of problems. 

Moreover, the constants M a.nd the decay rates Q depend only on the values of k and 

A. Thus, this type of approach suggests that approximate systems which preserve the 

H-dissipativity might be uniformly stabilizable and uniformly detectable. Pursuing 

this type of argument, we shall try to show that the following conditions are implied 

by Hypothesis 5.1, 5.2. (As in the discussions of section 4 surrounding (4.17)- (4.19), 

we assume that B N ( t )  = P / B ( t )  and W N ( t )  = P / W ( t ) . )  

Condition 5.1 There exists a constant 

uniformly bounded operator valued function K N ( . )  : [to, 00) H L ( H N ,  U N )  so that 

> 0 such that for  every N ,  there exists a 

holds for  all vN E H N .  
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Condition 5.2 There exists a constant 

uniformly bounded operator valued function QN(-) : [ t o ,  m) H L ( H N )  so that 

> 0 such that for  every N ,  there exists a 

holds for  all vN E H N .  

Note that if the original system satisfies Hypotheses 5.1 and 5.2, by the defi- 

nition of uN we have 

Let us compare inequality (5.3) to (5.1); if we could take K N ( t )  = K ( t )  in (5.1), 

then Condition 5.1 holds trivially. However, a careful examination of inequalities 

(5.3) and (5.4) reveals that  they do not provide stabilizability and detectability of 

the approximate system. In the case of (5.3) vs. (5.1) we observe that the range of 

the operator I<(.) hypothesized in Hypothesis 5.1 is not necessarily in U N  and I<(-) 
cannot be used as a stability operator for the control system in H N ,  U N  as required 

in Condition 5.1. Comparing (5.4) and (5.2) and recalling that W N ( t )  = P / W ( t ) ,  

we see that the the choice Q N  = PgQPg would suffice only in the case where 

P[(P/W(t))’/’ = W1/2(t). 

Before we state additional conditions for the approximate systems, let us con- 

sider several interesting cases for which stabilizability and detectability are preserved. 

I) Dissipative systems. Suppose that Hypotheses 5.1, 5.2 hold for K ( t )  G 0 and 

Q ( t )  0; then by definition of the sesquilinear form u N ,  the Conditions 5.1, 5.2 hold 

with K N ( t )  E 0 and Q N ( t )  0. This is the case when the homogeneous system is 

it self dissipative. 

11) Finite dimensional control. Suppose the control space U is finite dimen- 

sional. Taking U N  = U ,  we can use K”(t) = I<(t)  and the approximate systems are 

uniformly stabilizable. 
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111) Special stability operators. Consider the inequalities in Hypotheses 5.1, 5.2 

again. We can assume that these inequalities hold where B( t )K( t )  and \E(t)W1l2(t) 

are nonnegative definite self-adjoint operators. Suppose that there exist scalar func- 

tions ~ ( t )  2 0 and p ( t )  2 0 such that 

B(t )K( t )  5 K(t)B(t)B*(t), \E(t)W1/2(q 5 p(t)W(t).  

Then taking K ( t )  = ~ ( t ) B * ( t )  and Q(t )  = / ~ ( t ) W ’ / ~ ( t ) ,  we find Hypotheses 5.1 and 

5.2 also hold. If we modify slightly the definition of the sesquilinear form uN by 

the sesquilinear form 6N satisfies the Conditions 5.1 and 5.2. Indeed we note that 

the perturbation terms sa.tisfy 

Thus by taking K N ( t )  = P{K( t ) ,  \EN( t )  = P / Q ( t ) ,  the Conditions 5.1, 5.2 hold for 

G N .  On the other hand, the perturbation terms go to zero as N goes to 00. Therefore 

if we use &N as the sesquilinear form for the approximate control system in H N ,  the 

corresponding evolution operator P N  should also converge to 7’. 

The three ca.ses above motivate us to consider the following modifications of 

the sesquilinear form in H N .  Let the operator valued functions K( . ) ,Q( . )  be as in 

Hypotheses 5.1 and 5.2; define &N as: 
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for all vN,$N E H N .  Let A N @ )  : H N  H H N  be defined by 

Let ! f N ( . ,  .) be the evolution operator generated by AN( t ) .  

We can repeat the arguments in the proof of Theorem 4.4 using F N  in place 

of T N .  In the arguments, there is an extra term 

t 
2 6  Re < A N ( q ) w N ( q ) , Z N ( q )  >H dq 

on the right side of the inequalities, where A N ( q )  E L ( H N )  is given by 

A N ( t )  = P,NB(t)[I - P;]K(t)  + P,NQ(t)[I-  P,N]W1’2(t). 

There exists a constant C independent of N such that 

and, furthermore, 

I ~ ~ ~ N ( ~ ) ~ ~ ( p ~ ~ H  + 0, for 9 E H -  
I 

Recalling z N  = w - wN and using (4.15), we have wN = w - zN = P / w  - P / z N .  

We thus find (suppressing the argument q throughout) 

The integral (with respect to q )  of the first term in this last expression + 0 uniformly 

in t ,  s and can be added to the term oN(t, s) in (4.16), while the integral of the second 

term can be  included with the integral term in the right side of (4.16). We thus can 

argue: 
I 

Theorem 5.1 Under Hypotheses 5.1, 5.2, the conclusions (i), (ii) of Theorem 4.4’ 
hold for f N .  
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Now consider f" as the evolution operator for our approximate control systems 

in H N ;  the convergence of the solutions of the Riccati integral equation in any finite 

time interval still holds. To generalize the a.rguments in the three special cases I ) ,  11), 
111) above, we make the following additional assumptions. 

Hypothesis 5.3 Consider K( . ) ,Q( . )  as in Hypotheses 5.1, 5.2 and assume there 

exist constants i < k, j, < X and N such that for all N 2 N 

for all qN E H N .  

Lemma 5.3 Under Hypotheses 5.1, 5.2 and 5.3, the approximate control systems are 

uniformly stabilizable and detectable. 

Proof: We assume without loss of generality that N = 1. and 

x = X - i. By Hypothesis 5.3, > 0 and > 0. Take Ii"(t)  = P$K(t)  and 

Q N ( t )  = P l Q ( t ) ;  then with this choice of I i" ,QN, the Conditions 5.1, 5.2 hold for 

6 N .  Let ?E, ?,f be evolution operators corresponding to the perturbations of f" by 

BNIi" and QN(WN)'12 respectively. By Theorem 4.3, there exist constants M ,  a > 0 

depending on &, x only such that 

Let k = k - 

By the general framework of section 3, there exists a unique solution QN of 

the Riccati equation on the infinite time interval for each control system in H N .  

The operator QN(t )P/  converges strongly to the unique solution Q ( t )  of the Riccati 

integral equation for the original system in H as N + 00. The convergence is uniform 

in t for t in any bounded interval. 

We summarize the results for our dissipativity approach to uniform stabiliz- 

ability and detectability in the following theorem. 
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Theorem 5.2 Consider the parabolic control system defined b y  (4.10)- (4.12) under 

Hypothesis 4.1-4.3, 4.5-4. '7, and the corresponding approximate systems as defined via 

& N ,  f" as in this section where P f  -+ I strongly in V and PUN -+ I strongly in  U .  
Under the "H-dissipativity" Hypotheses 5.1, 5.2 and the consistency Hypothesis 5.3, 

the following conclusions hold: 

( i )  There exist unique uniformly bounded solutions Q N , Q  of the Riccati integral 

equations in the infinite time interval [to, 00) for each of the approximate control 

systems and the original system, respectively. There exists a constant M such 

that for  all t E [ to ,  00) 

( i i )  Let g N ,  S be the perturbed evolution operator corresponding to the perturbations 

o f f " ,  T b y  -BN(RN)-'B*NQN and -BR-'BQ respectively; then there exist 

constants M,cr > 0 such that 

f o r  all ( t , s )  E A,(to). 

(iii) As N + 00, Q N ,  ,$N converge to Q ,  S in the following sense: for all 9 E H 

The convergence is uniform in ( t , s )  in any bounded interval. 

The advantage of using the dissipativity approach outlined above is that the 

hypotheses are readily checked. The H-dissipativity can sometimes be replaced by 

even weaker dissipativity conditions for which one can obtain an exponential decay 

rate (e.g., see [Ch], [La]). For parabolic systems with strict V-ellipticity, we can 

avoid use of this type of argument as we shall see in the next section. However these 

results might be useful for systems without strict V-ellipticity or possibly even some 

hyperbolic systems (e.g., see [BKS], [BKW]). 
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6 Periodic systems: compact ness and uniform stabilizabil- 
ity 1 detectability 

One of the special features of parabolic evolution systems as defined in section 4 is 

that  the evolution operator T ( t , s )  is also a bounded linear operator from H to V .  
Since often the space V is compactly embedded in H ,  T ( t ,  s) is thus a compact oper- 

ator. Using this fact, we can show that the convergence of the sequence of operators 

T N ( t ,  s) to  T ( t ,  s) is in a stronger sense. In this section, by combining periodicity and 

compactness of the evolution operators T N  and T ,  we can show that the approxima- 

tion schemes discussed in section 4 preserve detectability and stabilizability. 

I 

Some ideas for the stability of periodic evolution operators can be found in 

[Hl], [H2]. The use of compact embedding ideas for the proof of operator norm 

convergence can be found in [BI2] ( The authors gratefully acknowledge K. Ito for 

fruitful discussions regxding this approach). 

In this section we make a periodicity assumption for our control system: 

Hypothesis 6.1 There exists a constant 8 > 0 such that 

(i)  The sesquilinear form u is 8-periodic in time; 

(ii) The operator valued functions B,  R, W are periodic in time with period 8. 

Lemma 6.1 Under the above assumption, the evolution operator T ( . , - )  of the corre- 

sponding homogeneous evolution equation is 8-periodic. 

Proof: For any s 5 t ,  and all q,y5 E V ,  we have 
I 

By the uniqueness of the solution of the weak form of our evolution equation, we have 

T( t  + 8,s + 6 ) 9  = T ( t , s ) y J ,  for 9 E H .  
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Under the periodicity Hypothesis 6.1, the continuity assumptions and the uni- 

form boundedness assumptions of the control system need only to be verified in the 

bounded interval [0,6]. The above lemma shows that the periodicity of the evolution 

operator is given by the periodicity of the corresponding sesquilinear form a. The fol- 

lowing theorem plays a very important role in the study of periodic systems. We give 

its proof in order to remind the reader of the dependency of certain bounds involved. 

Theorem 6.1 ( [Hl] ,  [H2]) Let T(. , . )  be a &periodic evolution operator. Then T ( . , - )  
is uniformly exponentially stable if and only i f  there exist an integer n and a constant 

p < 1 such that 

(6.1) IITW, O)IIL(H) I P. 

Proof: a) Let T( . ,  -) be uniformly exponentially stable; that  is, there exist constants 

M ,  w > 0 such that 

I 

I Therefore, if we take n large enough such that Mexp{-uno} < 1, and let P = 

Mexp{-uno}, we have that (6.1) holds. 

I b) Suppose (6.1) holds. Let C be a constant such that for all 0 5 s 5 t 5 ne, 

IIT(t,s)ll 5 C. Now for any 0 5 s 5 t < 00 and t - s > 8, we can find integers IC and 

I m such that 
t - s  
ne 

kI- 5 E + 1, (m  - 1)e 5 s 5 me. 

I Therefore, by the semi-group property of T ( - ,  .), we get 

T ( t , s )  = T( t , (nk  + rn)B)T((nk + m)8,m8)T(m07s). 

By definition of k and m, we have me - s 5 ne and t - (nk + m)O 5 ne; then by 

(6.1), we have 

I I W , S ) I I L ( H )  < - c2pk 5 C2eklogP 

Since p < 1, we have log p < 0; therefore we find 
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with M = C2/P and w = - log P/nO. 

Since the evolution operator T is also ne-periodic, therefore we can assume 

without loss of generality that I IT(O,O)IIL(H) 5 ,8 < 1. The following lemma is an 

interesting consequence of the above theorem. 

I 

Lemma 6.2 For a periodic system, if the stabilizability and the detectability assump- 

tions are satisfied, then we can find 6-periodic operator valued functions I ( ( . )  and 

$ ( e )  such that the evolution operator f ' ~  and f'; corresponding to the perturbation of 

the evolution operator T b y  BI?, $W1I2 are also uniformly exponentially stable. 

Proof: Suppose Ir', 9 are operator valued functions in the stabilizability and de- 

tectability assumptions. Let TIC, Tq be the evolution operators corresponding to  per- 

turbation of T by BK and 9W1I2 respectively. Without lost of generality, we can 

assume that there exists a constant p < 1 such that 

Now define &periodic operator valued functions k ) $  as I?(t)  = K ( t ) ,  $ ( t )  = 9(t) ,  

for t E [O,O), and extend periodically for t 2 8. Then we have f ' ~ ( 0 , O )  = TK(O, 0), 

f 'q(6,O) = Tq(O,O); therefore (6.2), (6.3) still hold for the new evolution systems. By 

Theorem 6.1, we conclude that f ' ~ ,  f'q are also uniformly exponentially stable. 

As a consequence of this lemma, we ca.n assume without loss of generality that 

the operator valued functions I(, 9 in Hypotheses 4.5 and 4.6 are &periodic. In fact 

we can make the following equivalent assumptions: 

t 

Hypothesis 6.2 There exist a constant p < 1 and 0-periodic operator valued func- 

tions I(, 9 ,  such that if T K ,  Tq are the evolution operators corresponding to the per- 

turbation of the evolution operator T b y  BIr', 9 W'I2 respectively, then 
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For the remainder of this section, we shall assume Hypotheses 6.1 and 6.2 

hold and we focus on the uniform stabilizability and the uniform detectability of the 

approximate control systems. Let Ii”(t) = P:li‘(t), Q N ( t )  = PCQ and T 2 , T t  
be the evolution operators corresponding to the perturbations of T N  by B N K N  and 

QN(WN)’12 respectively. As we have seen in the proof of the Theorem 6.1, the 

constant M and decay rate w depend only on the uniform bound of T and constant p. 
We already know (use the arguments of Theorem 4.4 and uniform boundedness of the 

perturbations) that  IIT[(t, s ) ~ I ~ ( ~ N )  and IIT,f(t, s ) I I ~ ( ~ N )  can be uniformly bounded 

by a constant C independent of N for all 0 5 s 5 t I 8; therefore to obtain uniform 

stabilizability and uniform detectability, we only have to show (see b) of the proof of 

Theorem 6.1) that  we can find $ < 1 and No such that for all N 2 No, we have 

If, on the other hand, the convergence of T z ( t , s ) P /  to T ~ ( t , s )  ( T $ ( t , s ) P /  to  

T q ( t , s ) )  is in the operator norm, then we can readily establish that (6.4), (6.5) hold 

for N large enough. The following theorem is very useful in the proof of this desired 

convergence. 

Theorem 6.2 Let H , V  be Hilbert spaces as defined in section 4 with V compactly 

embedded in H .  Consider a sequence of bounded linear operators irN defined on H 
and bounded linear operator 7 defined on H .  Suppose the range of T N  and 7 are in 

V ,  and the following conditions hold: 

(i) There exists a constant C such that 

(ii) For any p E H ,  we have 
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Then the convergence of the sequence of operators irN to 7 is in the operator norm, 

that is IllN - 7 l l L ( H ,  -+ 0, as N -+ 00. 

Before we give the proof of this theorem, let us state a useful lemma. 

Lemma 6.3 Consider a nonincreasing sequence of compact sets Ek, Ek 2 Ek+l, 

k = 1 ,2 ,3 , .  . .. If we have n& Ek = { 0 } ,  then for  each e > 0,  we can find ko large 

enough such that for  all k 2 ICo,  Ek is a subset of a ball B(0, E )  in H defined by  

w,4 = {Y  E H I IlYllH I+ 

Proof: Suppose there exists e > 0 such that for every k, we can find q k  E Ek, such 

that I ( Y k l l H  > e. Since the sequence {(Pk} is in E1 which is compact, we can assume 

that $9k converges to an element p in El. Obviously llpll~ > c/2. On the other hand, 

c p  must be in Ek for all k, therefore 9 is a.lso in the set E = n E , E k .  But since 

E = {0}, this is a contradiction. 

Proof of Theorem 6.2: i) By definition of the operator norm, we have 

Now let us define the set Fk as 

a3 

Fk = u {TN9 -79 I 9 E H ,  I l ~ I l H  5 I}. 
N = k  

Let Ek be the H closure of Fk. The sequence of operators I N  converges to 7 in 

operator norm if and only if for all e > 0, we can find k,, such that for all k 2 ko, we 

have El, C B(0, E). 

ii) We observe that Ek is a closed set in H and hence in V ,  and by our 

assumption Ek C v is bounded in V norm, in fact 

Therefore, Ek is a compact set. By definition of Ek, we know that { E k }  is a nonin- 

creasing sequence of compact sets. 
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iii) Let us define E = ng, Ek. Suppose y E E ;  since y is in the closure of Fk 

for all I C ,  we can find a sequence - y N  with l l - y N l l ~  5 1, such that y N  = ('TN - 7)-yN 

converges to y .  Therefore, for any $ E H ,  we have 

Since y N  is uniformly bounded in N and (7*N - 7*)$ goes to zero as N + 03, we 

have < y , $  > H =  0 for all 1c, E H ,  and therefore y = 0. 

Using the previous lemma and i), we obtain 117N - 7 l \ L ( H )  + 0, as N -+ co. 

Now recall the definition of the approximate control systems defined in section 

4, and consider 7N = T,$(O,O)P/, 7 = T K ( 6 , O ) .  By the results of the section 4, 

we can easily verify that the assumptions of Theorem 6.2 are satisfied. Therefore, we 

have 

11T;(fl7 o)p[ - T(0,  O ) \ ( L ( H )  + 0, 

as N + 00. Now let ,B be the constant in Hypothesis 6.2; letting 6 = 1 - ,B, we can 

find No large enough such that for all N 2 No we have 

Therefore, for all N 2 NO, we have 

E < 1 - -  
2 - 

We summarize our discussion in the following theorem: 

Theorem 6.3 Let H ,  V be the Hilbert spaces used in  the section 4 and assume that V 
is compactly embedded in H .  Suppose that Hypotheses 4.1-4.3, 4.Y and 6.1, 6.2 hold. 

Let H N  c V be the finite dimensional approximation spaces and let the approximate' 

control system be defined as in section 4.  Then we can find No large enough such 
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that for  all N 2 No, the approximate control systems are uniformly stabilizable and 

uniformly detectable. As a consequence, i f  Q N ,  Q are the unique solutions of the 

Riccati integral equations on the infinite time interval in H N ,  H respectively, and 

S N , S  are the evolution operators corresponding to the perturbations of T N ,  T b y  

- B N ( R N ) - ' B * N Q N ,  -BR- 'B*Q respectively, then we have: 

as N + 00. The convergences are uniform in [0,8] and for  ( t ,  s )  E A(0,O) respec- 

tivel y .  

We remark that an autonomous system is a particular case of a periodic system; 

therefore the approach used here can also be a.pplied to time invariant systems as 

considered in [BKl]. In the case of parabolic systems with strict V-ellipticity where 

V is compactly embedded in H ,  the arguments in this section offer an alternative (and 

more succinct) approach to uniform stabilizability/detectability from the dissipativity 

approach of section 5 .  

7 Parabolic partial differential equation control systems: 
An example 

In this section we consider control systems governed by second order parabolic partial 

differential equations with distributed scalar control. We indicate briefly how one 

formulates the associated control and approximate problems in the framework of 

section 4. For this class of systems we show that one can, under standard assumptions, 

readily verify the conditions for continuity, ellipticity, stabilizability and detectability 

required in section 4. For Galerkin type a,pproximation schemes based on spline 

subspaces, Conditions US and UD are readily established. 

Let R be a bounded open subset of Xn with an infinitely differentiable bound- 

ary I' given by a variety of dimension n - 1 and consider the following homogeneous 

49 



second order parabolic partial differential equation ([Ll], [L2, pp. 1001): 

where < = ([I, - - - , <,,) E R". Generic boundary conditions are given by 

where q ( ( )  = (ql(<) ,  - on the 

boundary r of 0. Note that for all E r, if y(t)  # 0, we can divide (7.2) by y((); 

therefore, we can assume without loss of generality that y takes only values 0 or 1. 

We choose as our state space H = L2(R); the appropriate choice for V depends on 

the boundary conditions and we consider several special cases. 

, q n ( < ) )  is the outward unit normal vector at a point 

( i )  Consider the case y(() = 0, P( t ,< )  = 1,'and thus equation (7.2) specifies the 

usual Dirichlet boundary condition. We then define V = H;(R), and a sesquilinear 

form 01 by 

(i i )  If we consider the case for y(<) = 1, P ( t , [ )  0, we obtain a Neumann 

boundary condition. We then choose V = H1(R) and note that the integrals in the 

definition of o1 above are also defined for any functions 9, $ in "(0). Therefore the 

sesquilinear form o 2  for Neumann boundary conditions can be taken as the same as 

for Dirichlet conditions,o2 = o1, and thus only the spaces V are changed. 

(iii) Consider the case r(<) E 1 and P ( t , [ )  $ 0 which results in Robin or 

mixed boundary conditions. We again choose V = H'(R), and define a sesquilinear 

form o3 by 

03( t ;  97 $) = 62(t ;  97 $) -k / P(', t)9(t)G(t)dt. r 
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By taking y ( t )  = 0 on a part rl of the boundary and y ( t )  = 1 on r - rl, 
we can obtain other mixed boundary conditions. The choice of space V should also 

be modified accordingly. In all the cases above, let V be the appropriate choice of 

Sobolev space (either H t  or P), and let u denote the corresponding sesquilinear 

form defined on V x V. Then a solution z ( t )  of equations (7.1) and (7.2) satisfies 

, d 
- < ~ ( t ) ,  $ >H= -a(t; ~ ( t ) ,  $), dt  

for all 1C, E V. (7.3) 

i 
As usual (7.3) is called the weak form of equations (7.1) and (7.2); see equations (4.7), 

(4.8) and (4.10), (4.11) of section 4. 

The continuity and the ellipticity conditions for the sesquilinear forms uj can 

be characterized by properties of the coefficients a;$,  b;, c and ,B. The standard as- 

sumptions ([L2], pp. 100) for V-continuity and Holder continuity of the sesquilin- 

ear forms u; are as follows: For each fixed t ,  the functions a ; j ( t ,  e), b;( t ,  -), c( t ,  a )  

are elements of L"(R), while the function P(t,  e )  is an element of L"(I'). Further- 

more, for each bounded interval [u,b] ,  there exist constants C > 0 and 0 < y < 1, 

such that each of the coefficients a;,j ,b;,c,p satisfy the bounds I l f ( t , . ) l l p  5 C and 

I l f ( t , - )  - f ( s , . ) l l p  5 C( t  - SI" for t , s  in [u,b],  where L" is L"(0) or L"(I7) as 

ap prop r i at  e. 

It is easily seen that under these assumptions, the V-continuity and V-Holder 

continuity Hypotheses 4.1 and 4.3 hold for u1 and u2 defined above. In the case of 

03, a boundary integral is involved; but under our assumptions on the smoothness of 

1 

I the boundary, the following estimates hold (see ([L2], pp. 17, Theorem 3.2, pp. 23): 
t 

For any y ,$  E H'(CI), the restrictions of yo,$ to the boundary I' belong to L 2 ( r ) .  
Furthermore, there exists a constant C such that 

Furthermore, for all E > 0, there exists constant C ( E )  such that 
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i With these estimates, it is readily argued that cr3 also satisfies the Hypotheses 4.1 

and 4.3 of section 4. 

To assure V-ellipticity we again make standard assumptions: for any bounded 

interval [u ,b] ,  there exists a constant v > 0 such that for all t E [u,b] and [ E R, 
n n 

for all ( = 

bounded time interval [u,b] ,  there exist constants c2 > 0 and m, such that 

e ,  Cn) E Xn. Under this assumption, it is readily seen that for each 

! 

for all 9 E V and t E [u,b].  That is, each of the sesquilinear forms cri, i = 1,2 ,3 ,  

defined above satisfies Hypothesis 4.2. 

In the remaining part of the this section,' let H , V  be the spaces of functions 

appropriate for a specific problem, and let u be the sesquilinear form defined for that 

I problem as above. For the control space U ,  we choose U = L2(R), with the control 

system being defined by (see (4.10)-(4.12)) 

d 
(7.4) dt I - < z( t ) , '$  > H =  - U ( t ; z ( t ) , $ ) +  < B(t )u( t ) ,$  > H ,  

for all 1c, in V .  We choose the cost functional given by (4.12). Here we define the 

operators B( t ) ,  W ( t ) ,  R(t)  by the following 

where b, w, r are scalar valued functions on [ to ,  00) x R. In this case, the uniform 

boundedness and the positivity of the corresponding operators can be readily char- 

acterized by conditions on the functions b,w and r. We assume that for each fixed 

I t ,  b ( t , - ) ,w( t , . )  and r ( t , . )  are elements of L"(R). As L"(R) valued functions of t ,  
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these functions are assumed continuous. Furthermore, assume there exists a constant 

C such that for all t E [to, oo), the functions b(t ,  -), w(t ,  . ) , r ( t , . )  satisfy the bound 

Ilf(t, .)IIL-(n) 5 C. The functions 20, r are assumed to be nonnegative and, indeed 

we assume there exists a constant ro > 0 such that r ( t , [ )  2 ro, a.e. in 0, for t 2 to .  

Under these assumptions, the operator valued functions B, W,  R satisfy the 

standing assumptions of sections 2 and 4. It remiins to consider Hypotheses 4.5 and 

4.6 (stabilizability and detectability of the original system) as well as Conditions US 
and UD once we have introduced approximations. For the problems considered here, 

we can use the definition of the sesquilinear forms to give sufficient conditions for 

Hypotheses 5.1 and 5.2 (and hence Hypotheses 4.5 and 4.6) to hold. To this end, 

we assume that there exist constants p > 0 and p > 0 such that for t E [ t o , o o ) ,  

lb(t, r>l 2 P ,  b( t ,  [ ) I  2 P ,  a-e. in 0. 

Under this assumption, it is readily seen that there exists constants 1 2 0 and 

IC > 0, such that each of the sesquilinear forms o, satisfies for y E V 

Thus, Hypotheses 5.1 and 5.2 hold with K ( t )  = lB*(t) and Q( t )  = IW1/2(t). 

For our approximate systems, we choose approximation spaces H N  and U N  
as in sections 3 and 4 generated by finite element or spline basis elements chosen so 

that H N  c V and U N  c U yield the desired convergence properties for PUN and P c  

respectively (see [C, Chaps. 2, 31, [B], [Sc]). The approximating systems are then 

defined as in section 5. It follows immediately that Hypothesis 5.3 holds and hence 

the conclusions of Theorem 5.2 are valid for the class of examples considered in this 

sect ion. 

We note that under periodicity assumptions we could have applied the alter- 

native approxh of section G to these examples since (see [A]) both V = H ' ( 0 )  and 
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V = H:(R) embed compactly in H = L2(R). 

In some of our related efforts, we have numerically tested the ideas presented 

in this paper on one dimensional versions of the example of this section. In these 

examples R = ( 0 , l )  and we have to  date used either linear or cubic B-splines to gen- 

erate the approximation spaces H N  and U N .  (In fact, when R is a parallelepiped, the 

above theory still is applicable and tensor products of one dimensional elements are a 

good choice for approximation elements.) We have considered several examples with 

time dependent periodic coefficients; for these examples we could use eigendirection 

analysis (see [W]) to give an analytic analysis for the feedback control problems. The 

resulting analytical solutions were used for comparison with the numerical solutions 

obtained using software implementations based on the theory developed in this paper. 

Quite satisfactory results were obtained and, as noted in the Introduction, these are 

being detailed in a separate manuscript under preparation. 

In concluding we note that the theory in this paper is also applicable to higher 

order parabolic systems (as well as to some boundary damped hyperbolic systems 

[BKS], [BKW]). In particular one dimensional Euler-Bernoulli beam models with 

Kelvin-Voigt damping satisfy (see [BIl]) the strong ellipticity assumptions needed in 

the theory developed above. While boundary control (as treated in [BI2]) for such 

models constitute an obvious class of problems, distributed control as treated in this 

paper is essential in cases where nonuniform piezoelectric layers along the beam are 

used to implement the feedback controls. 
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